
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 11 October 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 3 HS 21

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 18th.

Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points. In this
sheet, the only exercises that are counted towards bonus points are: 3.3.(a-c) and 3.4.(a-d). You can use
results from previous parts without solving those parts.

Exercise 3.1 Some properties of O-Notation.

Let f : R+ → R+ and g : R+ → R+.

a) Show that if f ≤ O(g), then f2 ≤ O(g2). You can assume that lim
x→∞

f(x)
g(x) = C ∈ R+

0 .

b) Give an example where f ≤ O(g), but 2f 6≤ O(2g).

Exercise 3.2 Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers an, with a ∈ Z and n ∈ N, ef-
�ciently. For this exercise, we will treat multiplication of two integers as a single elementary operation,
i.e., for a, b ∈ Z you can compute a · b using one operation.

a) Assume that n is even, and that you already know an algorithm An/2(a) that e�ciently computes
an/2, i.e., An/2(a) = an/2. Given the algorithm An/2, design an e�cient algorithm An(a) that
computes an.

b) Let n = 2k, for k ∈ N0. Find an algorithm that computes an e�ciently. Describe your algorithm
using pseudo-code.

c) Determine the number of elementary operations (i.e., integer multiplications) required by your algo-
rithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost anything.
�is includes handling of counters, computing n/2 from n, etc.

d) Let Power(a, n) denote your algorithm for the computation of an from part b). Prove the correctness
of your algorithm via mathematical induction for all n ∈ N that are powers of two.

In other words: show that Power(a, n) = an for all n ∈ N of the form n = 2k for some k ∈ N0.

e)* Design an algorithm that can compute an for a general n ∈ N, i.e., n does not need to be a power
of two.

Hint: Generalize the idea from part a) to the case where n is odd, i.e., there exists k ∈ N such that
n = 2k + 1.

f)* Prove correctness of your algorithm in e) and determine the number of elementary operations in
O-Notation. As before, you may assume that bookkeeping operations don’t cost anything.



Exercise 3.3 Counting Operations in Loops (1 Point).

For the following code fragments count how many times the function f is called. Report the number of
calls as nested sum, and then simplify your expression inO-notation (as tight and simpli�ed as possible)
and prove your result.

More precisely, let T (n) be the number of calls of function f in the snippet. Find as simple as possible
function g(n) such that T (n) ≤ O(g(n)) and g(n) ≤ O(T (n)) and prove these bounds.

For example, in the snippet

Algorithm 1
for k = 1, . . . , n do

f()

the function f is called
∑n

k=1 1 = n times. It is clear that in this example T (n) ≤ O(n). Moreover, this
bound is tight, that is, n ≤ O(T (n)).

a) Consider the snippet:

Algorithm 2
for j = 1, . . . , n do

for k = 1, . . . , n do
for m = 1, . . . , n do

f()

How many times is the function f called?

b) Consider the snippet:

Algorithm 3
for j = 1, . . . , n do

k ← min(j, 100)
for l = 1, . . . , k do

f()

How many times is the function f called?

c) Consider the snippet:

Algorithm 4
for j = 1, . . . , n do

if j2 ≤ n then
for k = j, . . . , n do

f()
f()
f()

How many times is the function f called?

2



Hint: You may use the following fact without proof: For every n ≥ 2, we have b
√
nc ≥

√
n
2 and

n− b
√
nc+ 1 ≥ n

2 , where bxc is the largest integer satisfying bxc ≤ x.

d)∗ Consider the snippet:

Algorithm 5
for j = 1, . . . , n do

k ← 1
l← 0
while k ≤ j do

for m = 0, . . . , l do
f()

k ← 13 · k
l← l + 1

How many times is the function f called?

e)∗ Consider the snippet:

Algorithm 6
for j = 1, . . . , n do

for k = 1, . . . , j do
for ` = 1, . . . , k do

for m = `, . . . , n do
for o = 1, . . . , 100 do

f()

How many times is the function f called?

Exercise 3.4 Investing in the stock market (2 Points).

You have 100 CHF and you are considering investing it in the stock market. You heard from your friends
that a particular stock is promising but you are not sure. You decided to analyze the performance of
this stock during the recent past.

You have a friend that had invested in this stock for n consecutive days in the recent past. You asked
your friend about how much money she invested in this stock and how much her total investment
worth was progressing every day. You gathered this information in two arrays A = (A1, . . . , An) and
I = (I1, . . . , In). Here, Ai represents the additional amount of money that your friend invested on the
i-th day. More precisely, if your friend bought on the i-th day thenAi would be positive, and if she sold
on the i-th day, then Ai would be negative. �e value of Ii is the total worth of her investment in the
stock on the i-th day. Here is an illustrating example with n = 4:

i 1 2 3 4

Ai 150 150 200 -100

Ii 150 350 500 400

In the above example, your friend had invested for 4 days. She invested A1 = 150 CHF on the �rst
day. Since she had not invested anything prior to that day, we must have I1 = A1 = 150 CHF. On

3



the second day, she invested an additional A2 = 150 CHF and the total worth of her investment was
I2 = 350 CHF. �is means that right before buying the additional 150 CHF, her total investment in the
stock was worth 350− 150 = 200 CHF, which is an indication of an increase in the price of the stock
from the �rst to the second day. On the last day of investment (i = 4), she sold 100 CHF worth of her
investment, and the remaining total worth of her investment a�er the selling operation was 400 CHF.

a) Let 1 ≤ i ≤ n − 1. Suppose that you had invested 1 CHF on the i-th day and sold the entire

investment on the (i+ 1)-th day. Show that you would have got
Ii+1 −Ai+1

Ii
CHF in return.

b) Let 1 ≤ i ≤ j ≤ n. Suppose that you had invested 100 CHF on the i-th day and sold the entire
investment on the j-th day. Show that your pro�t is equal to

100 ·
j−1∏
k=i

Ik+1 −Ak+1

Ik
− 100.

Note that in the above equation, we adopt the convention that if i = j, then
j−1∏
k=i

Ik+1 −Ak+1

Ik
= 1.

You are interested in �nding themaximumpro�t that you could havemade in a single buy-sell operation
by investing 100 CHF. Here, you would buy 100 CHF worth of the stock on some day iwhere 1 ≤ i ≤ n
and then sell the entire investment another day j where i ≤ j ≤ n.

We �rst assume that all A1, . . . , An and I1, . . . , In are positive, and that Ik > Ak for every k.

c) Describe how you can use the maximum subarray-sum algorithm that you learned in class in
order to devise an algorithm that computes the maximum pro�t in O(n) time. You can assume
that arithmetic operations (such as addition, subtraction, multiplication and division) as well as
logarithms and exponentials are elementary. �is means that the computation of log and exp
take one unit of time each.

Hint: You can use the fact that the logarithm is a strictly increasing function that turns products
into sums.

d) Now assume that the logarithm and exponential operations are expensive so that we would like
to avoid using them. Explain how you can modify the maximum subarray sum algorithm in order
to solve the problem using only elementary arithmetic operations such as addition, subtraction,
multiplication and division. �e running time of the algorithm should remain in O(n).

e)* Explain why your algorithm in part d) is correct.

f)* Now we consider the general case where A1, . . . , An and I1, . . . , In can be either positive or
negative1. Describe an algorithm that computes the maximum pro�t that you could have made
in a single buy-sell operation by investing 100 CHF. Does your algorithm run in linear timeO(n)?

Exercise 3.5∗ Maximum-Submatrix-Sum.

Provide anO(n3) time algorithm which given a matrixM ∈ Zn×n outputs its maximal submatrix sum
S. �at is, if M has some non-negative entries,

S = max
1≤a≤b≤n
1≤c≤d≤n

b∑
i=a

d∑
j=c

Mij ,

1If you are wondering how it is possible that the numbers in I1, . . . , In can be negative, check the oil price crash of 2020.

4

https://www.reuters.com/article/us-global-oil-idUSKBN2210V9


and if all entries ofM are negative, S = 0.

Justify your answer, i.e. prove that the asymptotic runtime of your algorithm is O(n3).

Hint: You may want to start by considering the cumulative column sums

Cij =

i∑
k=1

Mkj .

How can you compute all Cij e�ciently? A�er you have computed Cij , how you can use this to �nd S?

5


